

Tensegrity Engineering for

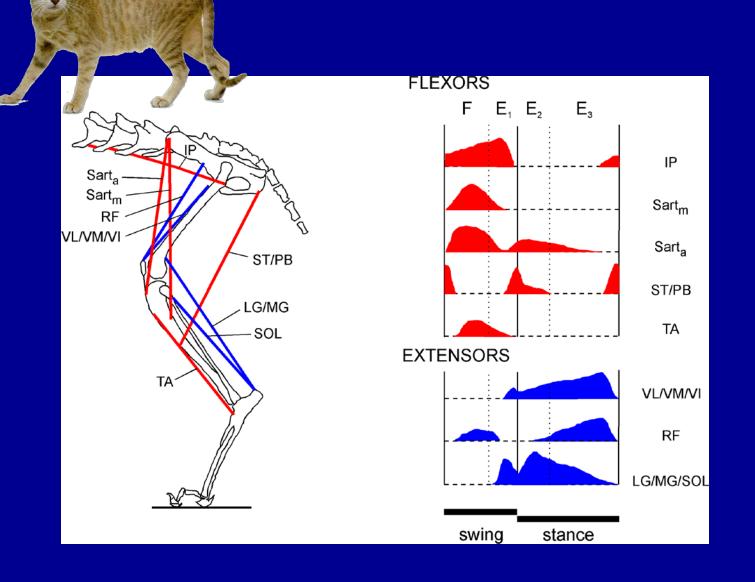
Space Systems

bobskelton@ucsd.edu

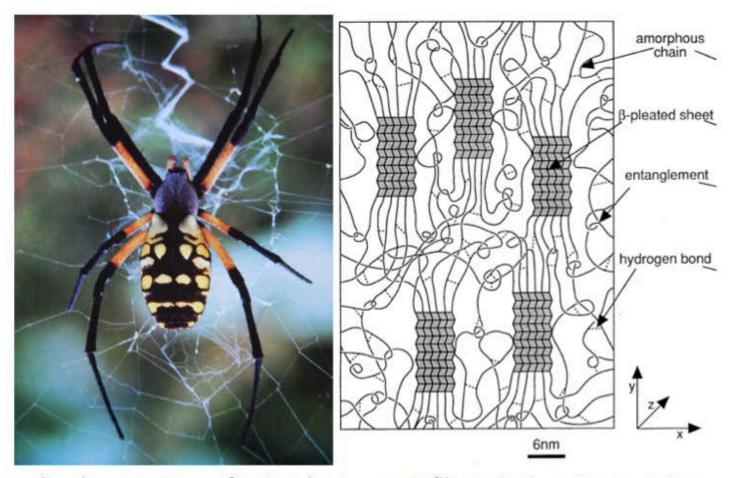
Professor Emeritus, UCSD

TIAS Faculty Fellow Texas A&M

First Motivation: Animal Locomotion

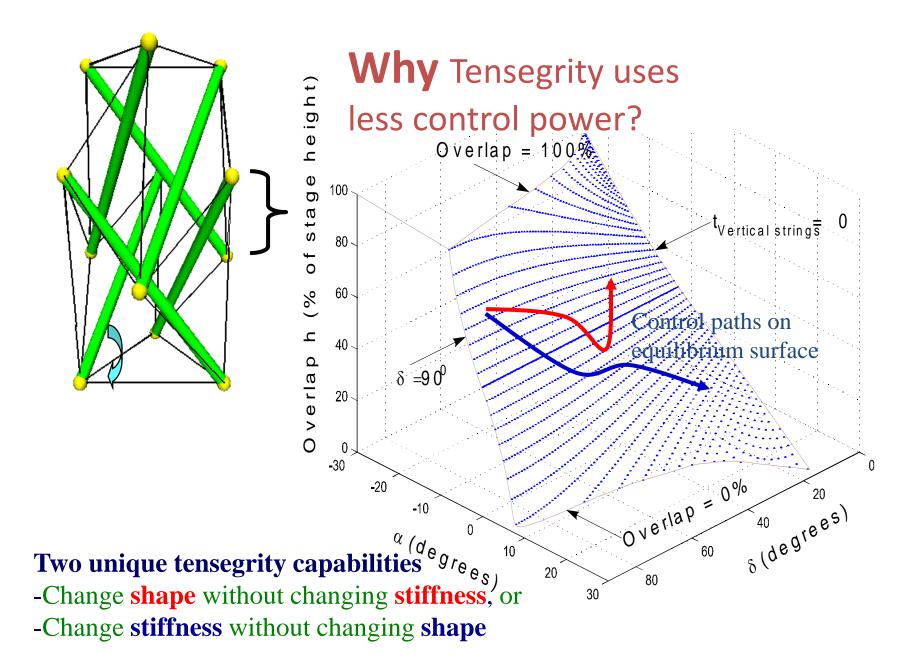


The dragline silk of a Nephila Clavipes



The molecular structure of nature's strongest fiber.

The rigid bodies are the β -pleated sheets, and the tensile members are the amorphous strands that connect to the β -pleated sheets



Class 1 Tensegrity Dynamics

Let rigid rods and massless elastic strings be connected as

$$\begin{bmatrix} B & R & S \end{bmatrix} = N \begin{vmatrix} C_b^T & C_r^T & C_s^T \end{vmatrix}, \qquad Then$$

$$\ddot{N}M + NK(\gamma, \dot{N}, W) = W$$

$$M = C_b^T \hat{m} C_b \frac{1}{12} + C_r^T \hat{m} C_r, \qquad K(\gamma, \dot{N}, W) = C_s^T \hat{\gamma} C_s - C_b^T \hat{\lambda} C_b$$

where

$$-\hat{\lambda} = \left[\dot{B}^T \dot{B} \right] \hat{m} \hat{l}^{-2} \frac{1}{12} + \left[B^T F(\gamma) C_b^T \right] \hat{l}^{-2} \frac{1}{2}, \qquad F(\gamma) = W - S \hat{\gamma} C_s$$

$$\lambda_i = \frac{\text{force in bar } b_i}{\|b_i\|}, \qquad \qquad \gamma_i = \frac{\text{force in string } s_i}{\|s_i\|}$$

Active Form-Finding

Feedback Control to converge to a specified desired shape \overline{Y} :

$$\ddot{N}M + NK(\gamma) = W$$
, $K(\gamma) = C^T \Sigma C$, $Y(t) = LN(t)R = \text{current shape}$

$$\Sigma = \begin{bmatrix} -\hat{\lambda} & 0 \\ 0 & \hat{\gamma} \end{bmatrix}, \qquad \begin{bmatrix} B & S \end{bmatrix} = NC^T, \quad C^T = \begin{bmatrix} C_b^T & C_s^T \end{bmatrix},$$

$$\hat{\lambda} = \frac{1}{12} \hat{l}^{-2} \left[6B^T (W - S\hat{\gamma}C_s) C_b^T - \dot{B}^T \dot{B}^T \hat{m} \right] = \text{a diagonal matrix}$$

Control objective: $Y(t) \rightarrow \overline{Y}$.

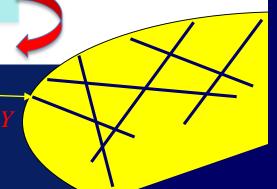
Find the control γ to cause the error $\Omega(t)=Y(t)-\overline{Y}$

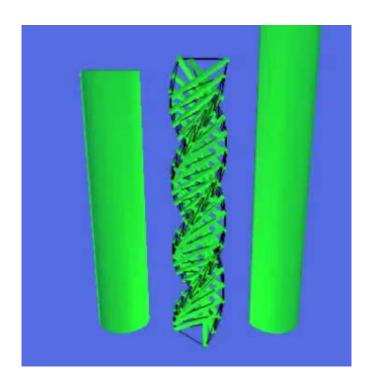
to satisfy a stable eq

$$\ddot{\Omega}+P\dot{\Omega}+Q\Omega=0$$

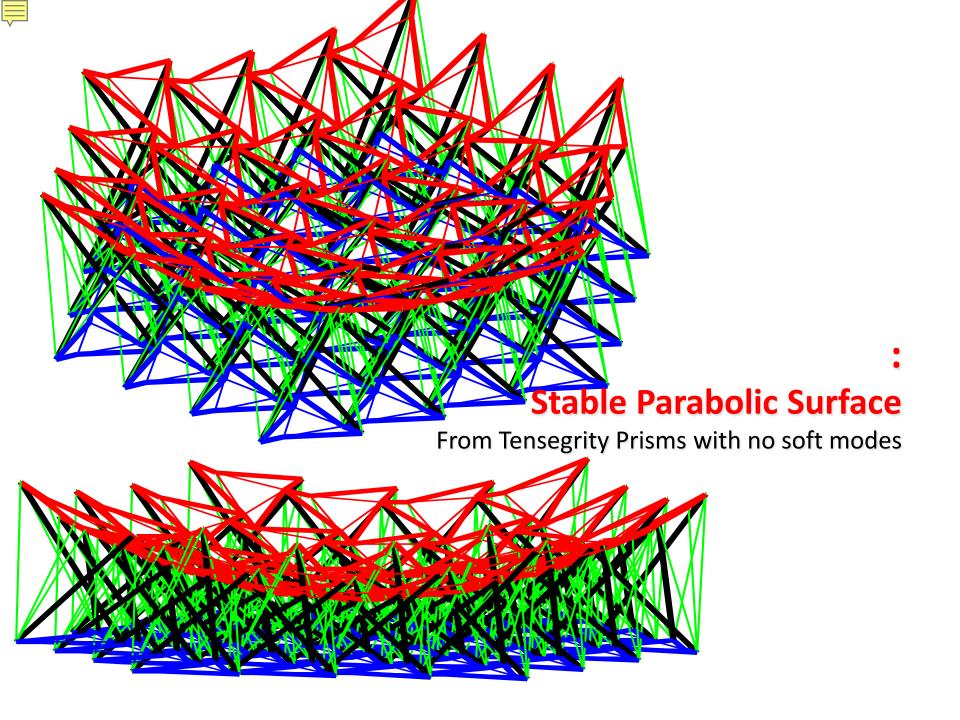
LINEAR in $\gamma(N(t), \dot{N}(t), W(t))$!!

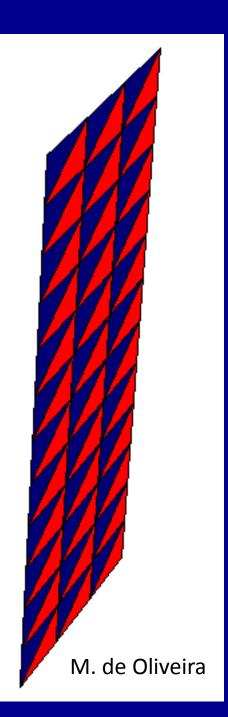
Desired shape
(Location of selected nodes) I











Integrate Design of Origami/Tensegrity

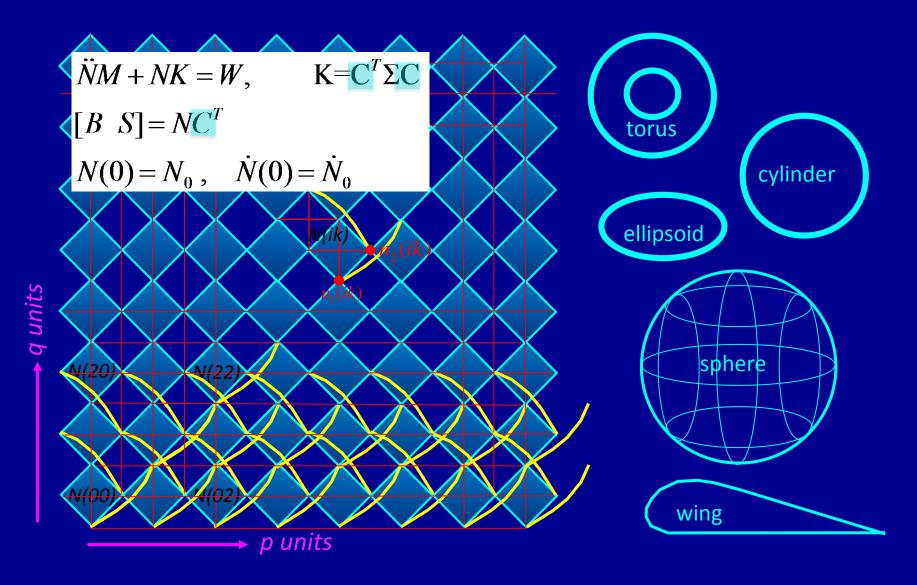
Tensegrity: 3D structures from 1D objects

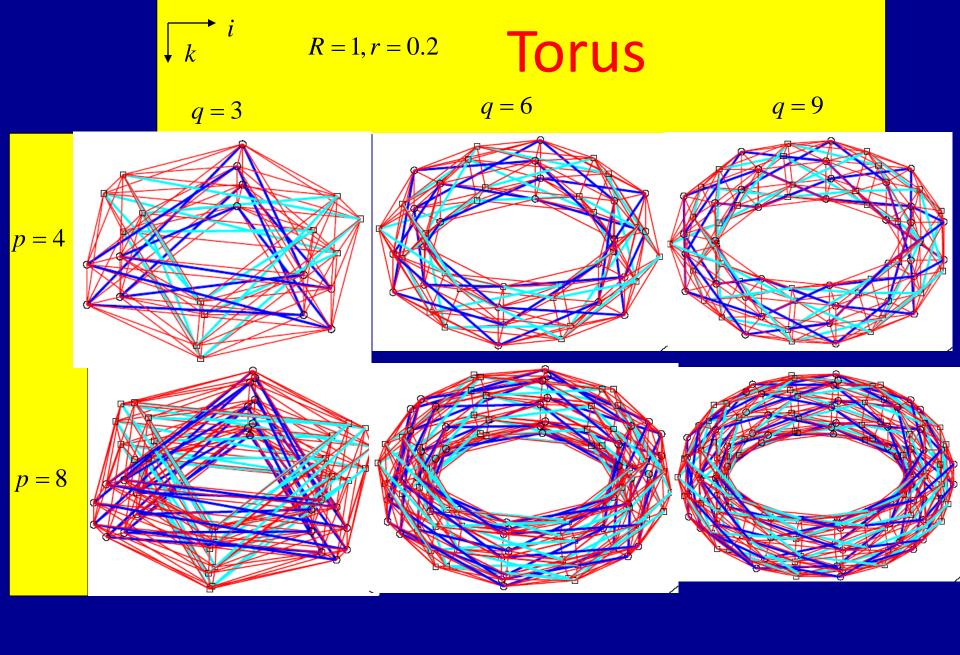
(High strength, high stability, low mass, deployable)

Origami: 3D structures from 2D objects

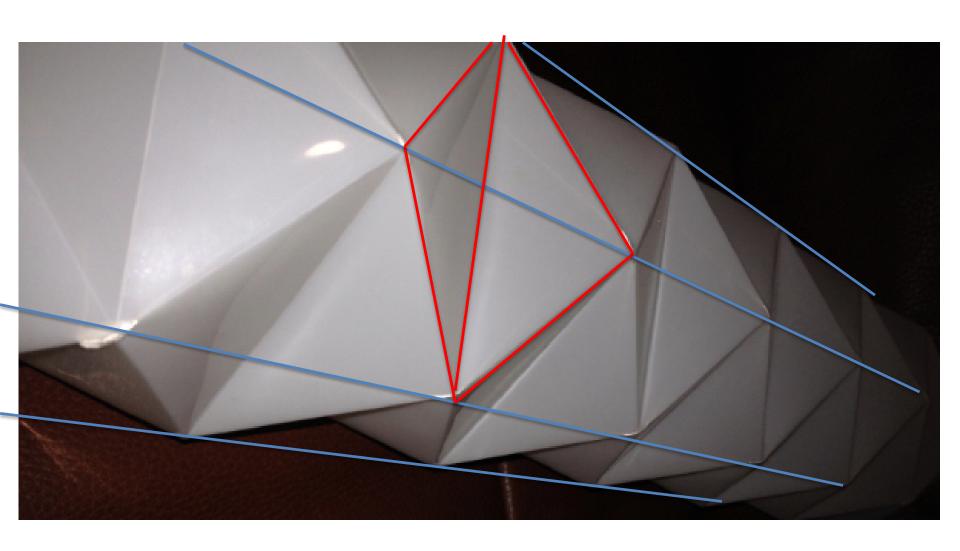
(low strength, low stability, foldable)

Double Helix Tensegrity (DHT)





Double Helix Tensegrity (DHT): Exterior View

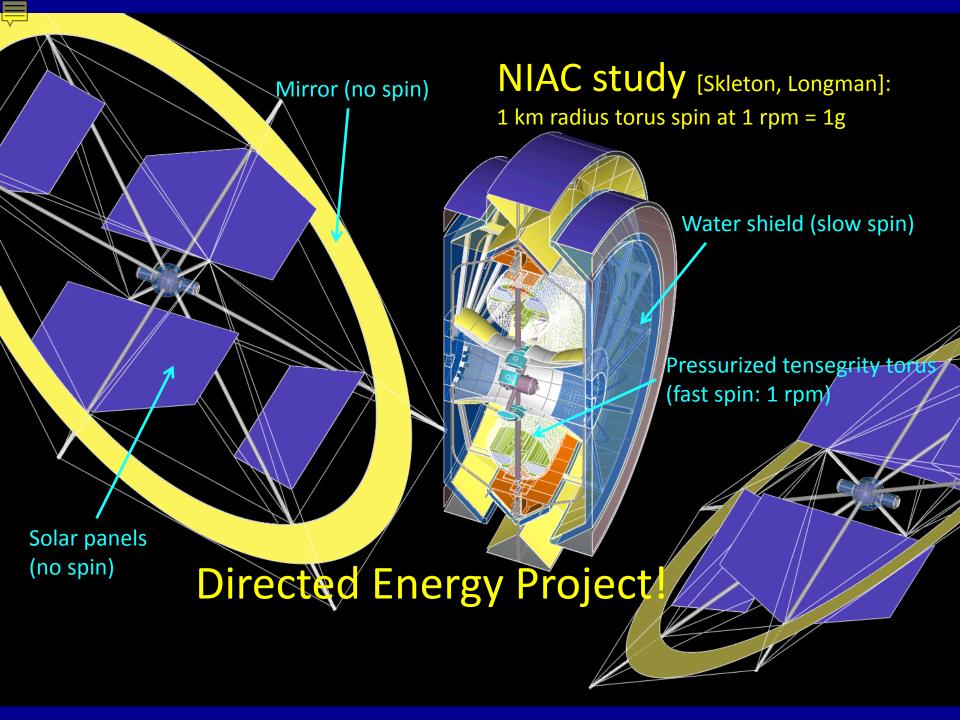


Primal and Dual DHT

Primal DHT: White lines are compressive members
Edges are tensile members

Dual DHT: White lines are tensile members (cables)

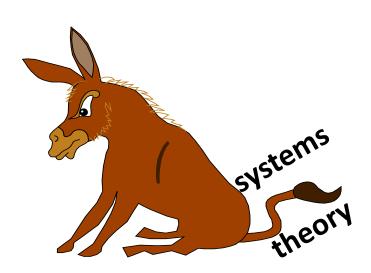
Edges are compressive members

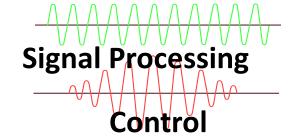


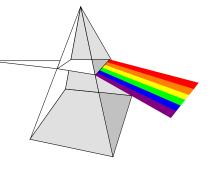
We Need Tools to Pin the Tail on the Performance Limiting Technology

From first principles, Universities teach component technology

Computing







Physics

Critical Issues in System Design

Given a performance bound we seek to:

- Min Mass of structure
- Min Energy for control
- MME design
- Enabling technologies for MME design:
 - Minimal mass structures (tensegrity)
 - Information Architecture (integrate choice of sensor/actuator networks, sensor & computational precisions, and control or estimation laws)
 - Deployment schemes (origami/tensegrity)
 - Model improvements from data

Information Architecture

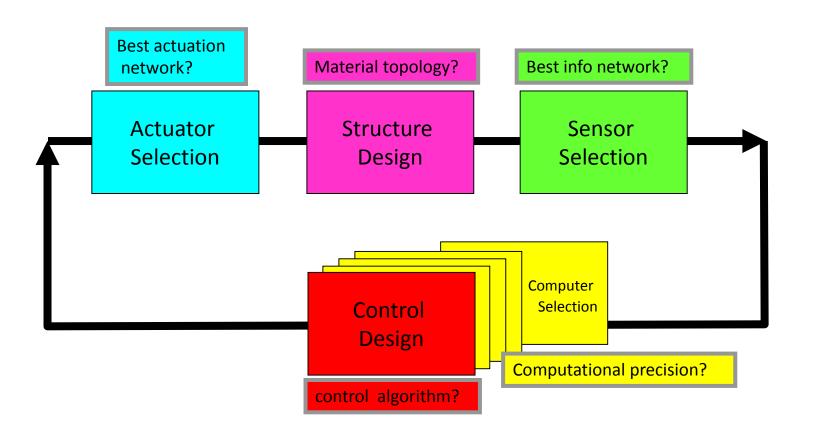
What to measure/actuate/compute?

With what precision?

With what control law?

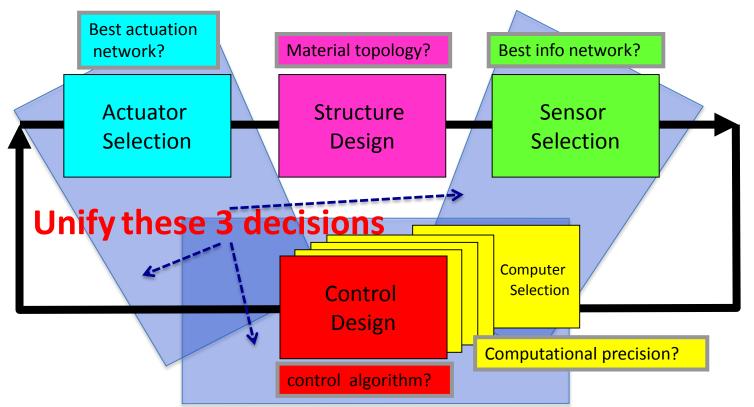
With what cost?

How to integrate these choices?



Information Architecture

(What to measure/actuate/compute? With what precision? With what control law? With what cost?)



Information Architecture [Skelton 2009] jointly optimizes:

1) control law and 2) sensor/actuator network (proves this is a convex problem if dynamics linear)

Conclusions

(the set of new analytical tools)

- Control theory has been extended to: select the precision and location required of all instruments while satisfying prespecified bounds on:
 - Total instrument costs
 - Performance errors
 - Control energy
- Analytical tools are available to: integrate origami and tensegrity designs of deployable structures, with shape control.
- Analytical tools are available to: generate all linear models which can identically match the data (a specified number of autocorrelations and cross-correlations of input/output data)

Information Architecture and Control

Plant: $\dot{x}_p = A_p x_p + B_p u + D_p w$

Output: $y = C_p x_p + B_y u$

Measurement: $z = M_p x + D_z w$

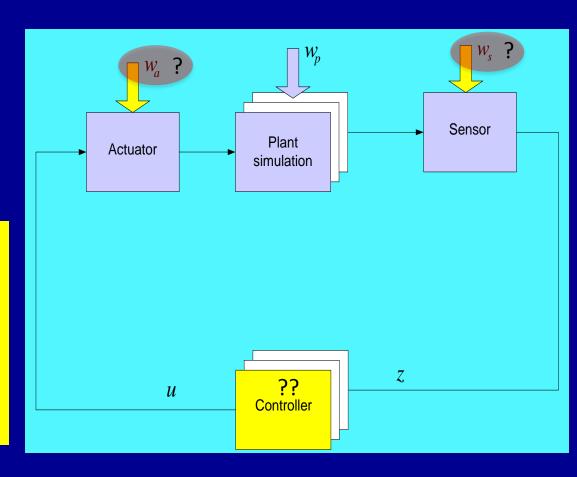
$$E\begin{bmatrix} w_{a} \\ w_{s} \\ w_{p} \end{bmatrix} = 0, \ E\begin{bmatrix} w_{a}(t) \\ w_{s}(t) \\ w_{p}(t) \end{bmatrix} \begin{bmatrix} w_{a}(\tau) \\ w_{s}(\tau) \\ w_{p}(\tau) \end{bmatrix}^{T} = \begin{bmatrix} W_{a} & 0 & 0 \\ 0 & W_{s} & 0 \\ 0 & 0 & W_{p} \end{bmatrix} \delta(t - \tau)$$

Controller G: $\dot{x}_c = A_c x_c + B_c z$ $u = C_c x_c + D_c z$

Find G such that

$$E \begin{bmatrix} uu^T \end{bmatrix} < \overline{U}$$

$$E \begin{bmatrix} yy^T \end{bmatrix} < \overline{Y}$$
convex



Information Architecture and Control

Plant:

Output:

Measurement: $z = M_p x + D_z w$

$$\dot{x}_{p} = A_{p}x_{p} + B_{p}u + D_{p}w$$

$$y = C_{p}x_{p} + B_{y}u$$

$$E\begin{bmatrix} w_{a} \\ w_{s} \\ w_{p} \end{bmatrix} = 0, E\begin{bmatrix} w_{a}(t) \\ w_{s}(t) \\ w_{p}(t) \end{bmatrix} \begin{bmatrix} w_{a}(\tau) \\ w_{s}(\tau) \\ w_{p}(\tau) \end{bmatrix}^{T} = \begin{bmatrix} W_{a} & 0 & 0 \\ 0 & W_{s} & 0 \\ 0 & 0 & W_{p} \end{bmatrix} \delta(t - \tau)$$

\$:=
$$trPW^{-1}$$

$$W^{-1} := \begin{bmatrix} W_a^{-1} & 0 \\ 0 & W_s^{-1} \end{bmatrix}$$

Controller G:

$$\dot{x}_c = A_c x_c + B_c z$$

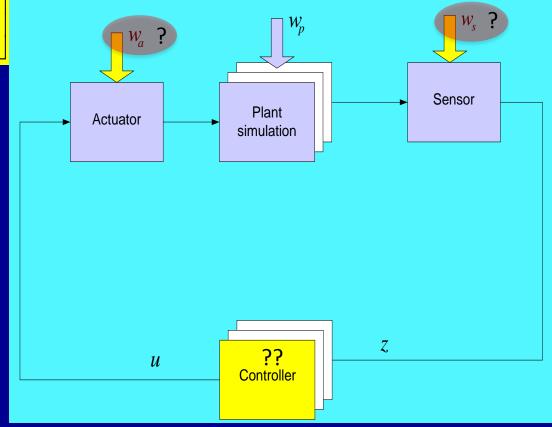
$$u = C_c x_c + D_c z$$

Find W and G such that

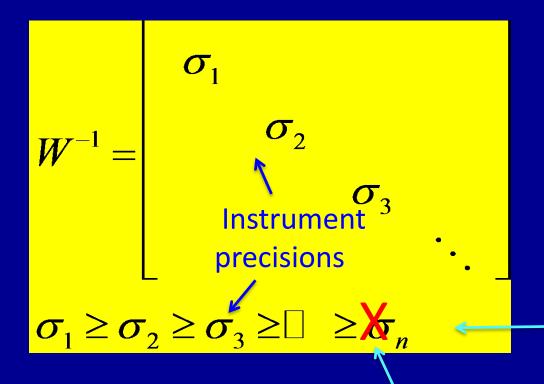
$$\$ < \overline{\$}$$

$$E[uu^T] < \overline{U}$$

$$E[yy^T] < \overline{Y}$$
Convex!



Sensor/Actuator Network Selection



\$ $\leq \bar{\$}$ Money $E[yy^T] \leq \bar{Y}$ Performance $E[uu^T] \leq \bar{U}$ Energy
Convex problem

After solving convex problem Observe this ranking

Delete\smallest precision instrument and repeat convex problem with smaller set of Instruments . Stop when feasibility is lost